

Case Series

Five Cases of Pediatric Cutaneous Mastocytosis and Autism Spectrum Disorder

Theoharis C. Theoharides^{1,2}

¹Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, USA ²Department of Immunology, Tufts University School of Medicine, Boston, USA

KEYWORDS

autism, cutaneous mastocytosis, luteolin, mast cells, microglia, skin

CORRESPONDING AUTHOR

Theoharis Theoharides, MS,
MPhil, PhD, MD, FAAAAI
Professor and Vice Chair of Clinical Immunology,
Director, Institute for Neuro-Immune Medicine-Clearwater,
Nova Southeastern University,
3400 Gulf to Bay Blvd, Room
3748
Clearwater, FL 33759, USA
Office (813) 574-5218
Cell (617) 217-8408
ttheohar@nova.edu

ABSTRACT

Here we report five cases of children with both Cutaneous Mastocytosis (CM), a pediatric condition of skin lesions containing mast cells, and autism spectrum disorder (ASD), a neurodevelopmental condition characterized by impaired communication and obsessive behaviors. This apparent comorbidity is intriguing given that the co-occurrence of these two conditions would be expected to be infrequent in the general population. The possible association between CM and ASD is supported by increasing evidence indicating a strong association between atopic dermatitis (AD), which involves mast cells, and ASD. Activated mast cells in CM and AD could contribute to their pathogenesis, hence inhibiting mast cell activation may have considerable benefit.

1. Introduction

Cutaneous mastocytosis (CM) is a disorder manifesting in children during the first two years of life. (1) The exact prevalence is not known due to lack of sufficient epidemiological data, but it is estimated to be about 1:10,000 children (0.001%) (2). Autism spectrum disorder (ASD) is a neurodevelopmental

condition characterized by impaired communication and obsessive behaviors affecting 1 in 31 (3.2%) children in the USA (3). There is no distinct pathogenesis or effective treatment for either CM or ASD (4, 5).

2. Methods

All children had been diagnosed with ASD by trained child psychiatrists using cutoff scores on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), as well as the validated scales of Autism Diagnostic Observation Schedule, Second Edition 1 (ADOS-2) and Diagnostic Interview-Revised (ADI-R). All children had mild to moderate ASD, as determined by using a composite score of 20-40 on the Childhood Autism Rating Scale (CARS), with the lowest score of 15 indicating normal behavior on all 15 scales, while the highest score of 60 indicates behavior is severely abnormal on all 15 scales). Fragile X, Tuberous Sclerosis, Rett and PTEN syndromes had been excluded on

clinical evaluation and appropriate genetic analysis. Brain MRI and EEG were also normal. Improvement in ASD-related symptoms was rated using the Clinical Global Impression-Improvement (CGI-I) scale (1=very much improved; 2=much improved; 3=minimally improved; 4=no change from baseline; 5=minimally worse; 6=much worse; 7=very much worse). Children were referred to TCT for unusual skin lesions. Diagnosis of CM was made based on history of symptoms, clinical observation. and a positive of Darier's sign (itching and redness upon stroking of the affected lesion).

3. Results

Here we report five cases of children with CM and ASD (Table I). All patients were Caucasian (3-11 years old) and all but one were male. Diagnosis of CM was made). In all children, all basic blood values including liver and thyroid function tests were normal, and the

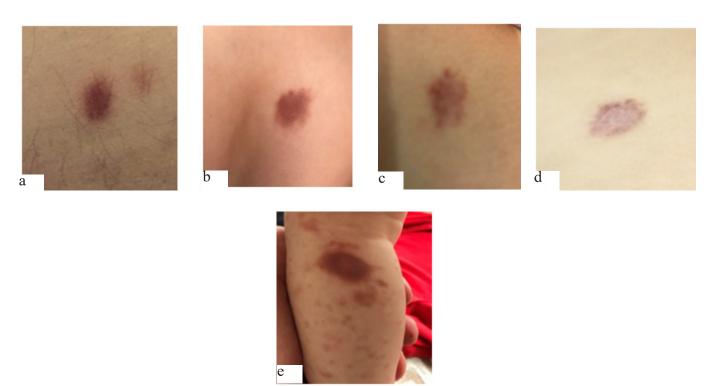

serum level of the mast cell marker tryptase was <10 ng/ml.

Table I. Demographics, CM characteristics and ASD-Symptom Improvement.

Patient	Sex	Age (years*)	Site of Lesion	Type of Lesion	CGI-I
1	M	6	Arm	Solitary	2
2	F	11	Back	Solitary	2
3	M	3.5	Arm	Solitary	2
4	M	5.5	Back	Solitary	3
5	M	3	Leg	Diffuse	2

^{*}Rounded up at the time of last encounter

There were four cases with solitary mastocytomas: One was present on the arm (Fig. 1a) and all others were on the torso (Fig. 1b-d); one case involved congenital diffuse CM (Fig. 1e).

Fig. 1. Photomicrographs of skin lesions: **a**. solitary mastocytoma lesion from the back of a 11-year-old Caucasian male; **b**. Photomicrograph of a solitary mastocytoma lesion from the arm of a 6-year-old Caucasian male; **c**. Photomicrograph of a solitary mastocytoma lesion from the abdomen of a 5.5-year-old Caucasian male; **d**. Photomicrograph of a solitary mastocytoma lesion from the abdomen of a 4-year-old Caucasian female; **e**. Photomicrograph of diffuse CM lesions from the leg of a 3-year-old Caucasian male.

All children were administered a dietary supplement (NeuroProtek®, one softgel capsule twice per day for 6 months) containing the flavonoids luteolin, quercetin and rutin formulated in olive pomace oil (6). Additionally, a skin lotion containing the luteolin structural analogue tetramethoxyluteolin (7) (GentleDerm®) was

applied on the lesional skin twice per day. All children continued with speech therapy sessions. Six months after initiation of this intervention, parents reported that the skin lesions had "faded" and there was significant overall ASD symptom improvement using the CGI-I.

4. Discussion

We had previously reported that children born to mothers with systemic mastocytosis, which is characterized by a greater number of hyperactive mast cells (8), had a higher risk of being diagnosed with ASD than the general population (9).

The comorbidity of CM and ASD is intriguing espe-

cially since the prevalence of pediatric CM has been reported to be about 0.0001% and that of ASD is about 3.0% making the possibility of these two conditions co-occurring (3 in 1,000,000 or 0.0003%) extremely unlikely (Table II).

Table II. Calculation of Chance of Comorbidity of CM and ASD.

To determine the chance of comorbidity for two conditions, one multiplies the individual prevalence rates, assuming the conditions are independent. This means that one condition does not influence the likelihood of developing the other. To calculate the chance of comorbidity:

1. Define the prevalence rates as probabilities:

- o Condition A: 1 in 10,000, or P(A)=1/10,000=0.0001
- o Condition B: 3 in 100, or P(B)=3/100=0.03

2. Multiply the probabilities.

- o The probability of two independent events both occurring is
- o $P(A \text{ and } B) = P(A) \times P(B)$
- o P(Comorbidity)=0.0001×0.03=0.000003

3. Result

The chance of comorbidity for these two conditions is 3 in 1,000,000, or 0.0003%.

Only one case of pediatric CM in a male child with motor and intellectual delay has been reported (10). Epidemiological studies have shown a statistically significant association between ASD and atopic dermatitis (AD) (11, 12), as well as other atopic diseases (13), all of which also involve activation of mast cells (14).

Mediators released from mast cells (15) could contribute to the pathogenesis of ASD by: (a) increasing the permeability of the blood-brain barrier (BBB) and allowing toxins to enter into the brain where they stimulate microglia leading to focal brain inflammation (14) and releasing metalloproteinases that could disrupt neuronal connectivity (16).

The flavonoids in the supplement and skin lotion used have been reported to inhibit human mast cells (17) and microglia (18). Moreover, the dietary supplement used had been reported to result in a significant decrease in serum levels of pro-inflammatory markers in children

with ASD (19). A recent review stressed the possible significance of mast cells in the pathogenesis of ASD (20).

There are a number of limitations to be considered. The number of subjects was small and this case study was open-label; moreover, the improvement was subjective even though the scale used has been utilized in numerous investigators. The apparent improvement of symptoms noted may also be due to the natural course of the conditions. However, pediatric CM does not improve on its own until puberty and ASD-related symptoms do not typically resolve within 6 months regardless of speech therapy.

4. Conclusion

The apparent co-occurrence of CM and ASD is intriguing and could point to associations important for understanding pathophysiological interactions that may contribute to the development of both conditions in at

least a subgroup of children. Any allergic manifestations and suspicious skin lesions in children with ASD should be investigated and addressed.

Abbreviations

ADOS-2 = Autism Diagnostic Observation Schedule, Second Edition

ADI-R = Diagnostic Interview-Revised

ASD = Autism Spectrum Disorder

BBB = blood-brain barrier

CARS-2 = Childhood Autism Rating Scale, Second Edition

CGI-I = Clinical Global Impression-Improvement

CM = cutaneous mastocytosis

DSM-5 = Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition

www.scientificeditorial.com

Acknowledgments

This research was partly supported by a donation from an anonymous family foundation unrelated to any of the subjects studied.

Ethical considerations

This study conforms to the Declaration of Heksinski and the US Federal Policy for the Protection of Human Subjects. There is NO identifying patient information, and the author has permission to publish from the respective parents.

References

- 1. Torrelo A, Colmenero I, Alvarez-Twose I. Childhood mastocytosis: challenges and potential shortfalls in current disease classification. Br J Dermatol. 2025; 193(2):203-211. doi:10.1093/bjd/ljaf14.
- 2. Sandru F, Petca RC, Costescu M, Dumitrașcu MC, Popa A, Petca A, Miulescu RG. Cutaneous Mastocytosis in Childhood-Update from the Literature. J Clin Med. 2021; 10(7):1474. doi: 10.3390/jcm10071474.
- 3. Shaw KA, Williams S, Patrick ME, et al. Prevalence and Early Identification of Autism Spectrum Disorder Among Children Aged 4 and 8 Years Autism and developmental disabilities monitoring network, 16 sites, United States, 2022. MMWR Surveill Summ. 2025; 74 (2):1-22. doi:10.15585/mmwr.ss7402a1.
- 4. Ayoub G. Autism Spectrum Disorder as a Multifactorial Disorder: The Interplay of Genetic Factors and Inflammation. Int J Mol Sci. 2025; 26(13):6483. doi:10.3390/ijms26136483.
- 6. Taliou A, Zintzaras E, Lykouras L, et al. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Ther. 2013;35(5):592-602. doi:10.1016/j.clinthera.2013.04.006
- 7. Theoharides TC, Stewart JM, Tsilioni I. Tolerability and benefit of a tetramethoxyluteolin-containing skin lotion. Int J Immunopathol Pharmacol. 2017; 30(2):146-51. doi:10.1177/0394632017707610.
- 8. Theoharides TC, Valent P, Akin C. Mast Cells, Mastocytosis, and Related Disorders. N Engl J Med. 2015;

Disclosures

TCT is on the Medical Advisory Board of the Mastocytosis Society. He is also the Scientific Director and shareholder in Algonot, LLC (Sarasota, FL).

Community involvement

There was no community involvement other than the families of children with ASD reaching out to me because of the unusual skin lesions.

- 373(2):163-72. doi:10.1056/NEJMra1409760.
- 9. Theoharides TC. Autism spectrum disorders and mastocytosis. Int J Immunopathol Pharmacol. 2009; 22(4):859-65. doi:10.1177/039463200902200401.
- 10. Watanabe Y, Morichi S, Takamatsu T, et al. Pediatric Cutaneous Mastocytosis With Motor and Intellectual Delay. Cureus. 2023; 15(2):e34536. doi:10.7759/cureus.34536.
- 11. Billeci L, Tonacci A, Tartarisco G,et al. Association Between Atopic Dermatitis and Autism Spectrum Disorders: A Systematic Review. Am J Clin Dermatol. 2015; 16(5):371-88. doi:10.1007/s40257-015-0145-5. 12. Shin KO, Crumrine DA, Kim S, Lee Y, Kim B, Abuabara K, Park C, Uchida Y, Wakefield JS, Meyer JM, Jeong S, Park BD, Park K, Elias PM. Phenotypic overlap between atopic dermatitis and autism. BMC Neurosci. 2021; 22(1):43. doi:10.1186/s12868-021-00645-0.
- 13. Theoharides TC, Tsilioni I, Patel AB, et al. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry. 2016; 6(6):e844. doi:10.1038/tp.2016.77.
- 14. Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol. 2024; 132(4):440-454. doi:10.1016/j.anai.2023.10.032.
- 15. Zhang X, Wang Y, Dong H, et al. Induction of Microglial Activation by Mediators Released from Mast Cells. Cell Physiol Biochem. 2016; 38(4):1520-31. doi:10.1159/000443093.
- 16. Rexrode LE, Hartley J, Showmaker KC, et al. Molecular profiling of the hippocampus of children with autism spectrum disorder. Mol Psychiatry. 2024; 29(7):1968-1979. doi:10.1038/s41380-024-02441-8.

17. Weng Z, Patel AB, Panagiotidou S, et al. The novel flavone tetramethoxyluteolin is a potent inhibitor of human mast cells. J Allergy Clin Immunol. 2015; 135(4):1044-52 e5. doi:10.1016/j.jaci.2014.10.032.
18. Patel AB, Tsilioni I, Leeman SE, et al. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism. Proc Natl Acad Sci U S A. 2016; 113(45):E7049-E58. doi:10.1016/j.jaci.2014.10.032.
19. Tsilioni I, Taliou A, Francis K, et al. Children with autism spectrum disorders, who improved with a lute-

olin-containing dietary formulation, show reduced se-

- rum levels of TNF and IL-6. Transl Psychiatry. 2015; 5(9):e647. doi:10.1038/tp.2015.142.
- 20. Priego-González L, Pardo PP, Redegeld F. The role of mast cells in Autism Spectrum Disorder. Neurosci Biobehav Rev. 2025; 176:106263. doi:10.1016/j.neubiorev.2025.106263.