

Perspective Article

From Filling to Function – the Evolution of Dermal Fillers

Uwe Wollina^{1,2}

¹Former Head of the Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital, Dresden, Germany; ²Adjuvant International Adjuvant Faculty, Department of Dermatology, Venerology & Leprosy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research - Premier Deemed to be University, Wardha, Maharashtra, India

Corresponding author:

Prof. Dr. Uwe Wollina, M.D.

Former Head of the Department of Dermatology and Allergology,

Städtisches Klinikum Dresden, Academic Teaching Hospital,

01067 Dresden, Germany;

Adjuvant International Adjuvant Faculty,

Department of Dermatology, Venerology & Leprosy,

Jawaharlal Nehru Medical College,

Datta Meghe Institute of Higher Education & Research

Premier Deemed to be University,

Wardha, Maharashtra, India

e-mail: uwollina@gmail.com

Keywords: dermal filler, facial rejuvenation, biostimulation, aging, face

Received: 12 October 2024 Accepted: 22 January 2025

Copyright:

Journal of Applied Cosmetology ©2025 www.journalofappliedcosmetology.com Copyright © by Journal of Applied Cosmetology ISSN 2974-6140 (online) ISSN 0392-8543 (print).

This publication and/or article is for individual use only and may not be further reproduced without written permission from the copyright holder. Unauthorised reproduction may result in financial and other penalties DISCLOSURE: ALLAUTHORS REPORT NO CONFLICTS OF INTEREST RELEVANT TO THIS ARTICLE.

ABSTRACT

Dermal fillers first gained interest in the late 19th century, but their safety and efficacy were inadequate. But the development of fillers continued and is going on. Temporary fillers like cross-linked hyaluronic acid are widely used nowadays. Biostimulatory semi-permanent fillers like poly-L-lactic acid and calcium hydroxylapatite offer an increase in longevity with excellent safety. Newer developments are the hybrid fillers that often combines a temporary and a semi-permanent filler type to obtain better rheological qualities for a natural look. With the development of products on the market, our understanding of fillers has moved from substitution of lost volume to stimulation of autologous cells, such as fibroblasts, endothelial cells, and adipocytes. An improved understanding of tissue regeneration will support the design of a new filler type for specific interaction with the host tissue.

INTRODUCTION

Dermal fillers are the most versatile tools in esthetic dermatology to restore lost volume and provide a youthful appearance. The fillers go back to the 19th century when mineral oils like paraffin or oils from animal or plant sources such as lanolin, camphor oil, and cottonseed oil were used. Paraffin and other oils can cause granulomas, sterile abscesses, necrosis, embolization, and lymphangitis. Despite the major adverse events, it has survived the illegal criminal injections in the penis and muscles (1-3).

Liquid medical-grade injectable silicone was introduced in 1962. It was used to correct facial wrinkles and furrows. It became popular in the late 20th century. Orentreich invented the microdroplet injection (4). Later, it was propagated for the correction of HIV-associated facial lipoatrophy (5). Since it is a permanent filler, adverse events can occur years after implantation, such as filler migration, granulomas, induration, edema, ulcerations, and even hypercalcemia (6).

Collagen fillers became FDA approved in the early 80ties of the last century with Zyderm® and Zyplast® (Collagen Corporation, Palo Alto, CA) – two bovine products. Skin tests before injection were recommended to screen for collagen hypersensitivity. Porcine and human collagen products followed. The longevity of the volumizing effect of bovine collagen is usually between 4 to 6 months (1).

The first non-collagen product for wrinkle correction was launched in the 90ties with Profill® (OVI SA, France) and Arteplast® (INTERPLAST, Germany). Arteplast® was a permanent filler composed of polymethyl-methacrylate microspheres in gelatin. Profile® was a mixture of hydroxy-polyethylene and hydroxy-polypropylene. Novabel® (Merz Pharma, Germany) was launched in 2010. It consisted of spheres made of alginate. Profill® and Novabel® were associated with adverse events such as facial lipoatrophy or a higher risk of granulomas, respectively. Therefore, these products were withdrawn from the market. Arteplast® gave granulomas, which led to further modifications of the carrier gel and the microspheres (1). Artefill® became FDA-approved in 2006. Other permanent filler materials include polyethyl-methacrylate, polyacrylamide, and polyalkylimide. Granulomas, migration, sterile abscesses, and soft tissue infections have been reported even years post-procedure (7).

Cross-linked Hyaluronic Acid, Poly-L-lactic Acid, and Calcium Hydroxylapatite

Hyaluronic acid (HA) is a high-molecular-weight glucosaminoglycan. HA has a high affinity for water molecules (Fig. 1). HA fillers (HAFs) are stabilized by cross-linking agents, preventing the rapid degradation of the filler product by endogenous hyaluronidase. Nowadays, HAFs are the most frequently used biodegradable dermal fillers in esthetic and reconstructive medicine (8).

They are generally safe, but procedure- or product-related adverse events can occur. The most common adverse events are mild and temporary, such as swelling, lumps or bumps, and firmness. Vascular complications are the most severe complications. Fortunately, they are rare (9).

Fig. 1. Hyaluronic acid is a polymer of disaccharides that are composed of D-glucuronic acid and N-acetyl-D-glucosamine, linked via alternating β - $(1\rightarrow 4)$ and β - $(1\rightarrow 3)$ glycosidic bonds (Public domain).

Semi-permanent and biostimulatory fillers include poly-L-lactic acid (PLLA) and calcium hydroxylapatite (CaHA) (Fig. 2, 3). Both are completely biodegradable but offer a longer longevity of ≥24 months. PLLA is injected 2-3 times a month apart. Sculptra® Aesthetics (Galderma, Dallas, TX) consists of 10–200 µm large microparticles and leads to chronic low-intensity inflammation resulting in stimulation of collagen production, volumizing, and skin tightening (10, 11).

Fig. 2. Polylactic acid (Public domain).

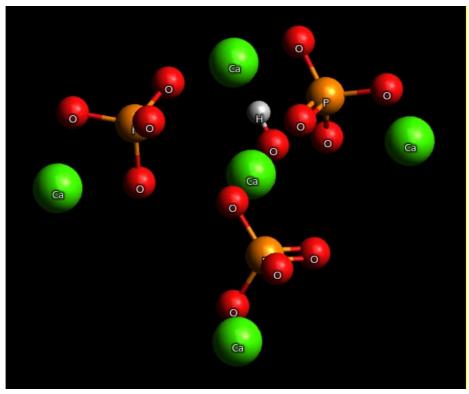


Fig. 3. Hydroxylapatite (Public domain).

Radiesse® (Merz Pharmaceuticals GmbH, Frankfurt/M.) is a CaHA Filler composed of round 20-45 µm large microspheres in a carboxymethyl-cellulose gel. After implantation, the production of collagen I and III, elastin, and proteoglycans was stimulated, and no inflammatory tissue response was observed (12, 13).

More recently, hybrid fillers have been released on the market. They aim to improve rheological qualities (14-17). Table I provides an overview of hybrid fillers.

			•	77	1	. 1	A1	1
10	h	IΔ		H١	,hi	nd	11/1	lers.
14	w	1		1 I V	'171	ıu	IUUI	EI N.

Tuble 1. 11yo, tarytate. S.			
Product	Remarks	Reference	
Hybrids of high- and low-molecular			
HA			
Profhilo® (IBSA Farmaceutici, Italy)	Hybrid complexes of high- (1,100–1,400 kDa) and low-molecular HA (80–100 kDa), 32 mg/mL HA, NAHYCO® technology	(14)	
Profhilo® Structura (IBSA Farmaceutici,	Like Profhilo® but 45 mg/mL HA		
Italy)			
Hybrids of HA and CaHA			
HArmonyCa® (Allergan Aesthetics, an	HA (20 mg/mL); CaHA (55.7%) microspheres	(15)	
AbbVie Company)	(25-45 μm), and 0.3% lidocaine		
Stimulate® (MatexLab SA, Lugano,	HA (26 mg/mL), CaHA (1%) and amino acids,	(16)	
Switzerland)	pegylated HA		
Stimulate® Man (MatexLab SA, Lugano,	HA (28 mg/mL), CaHA (1%), and amino acids		
Switzerland)	pegylated HA.		

Hybrids of PLLA and HA

AestheFill® (Regen Bio Global Inc., HA (46 mg) and PLLA (154 mg) in a 200 mg vial (17)

Seoul, South Korea)

Reversal® PLA+HA (Koru Pharma; HA (30 mg) and PLLA (170 mg) in a 200 mg vial

Seoul, South Korea)

Juvelook® Volume (LV Plastic Surgery, HA (30 mg) and PLLA (170 mg) in a 200 mg vial

Seoul, South Korea)

Adipose Tissue and Fillers

Adipose tissue in humans consists of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Facial adipose tissue is important in facial aging and rejuvenation (Fig. 4). In adults, it is mostly white adipose tissue (WAT). The facial adipose tissue has subcutaneous WAT (sWAT) and a dermal compartment (dWAT), forming cones around hair follicles and eccrine sweat glands. The facial subcutaneous WAT (sWAT) has been divided into three groups (Table II) (18).

Fig. 4. Facial adipose tissue. (a) Dermal white adipose tissue forming a cone around eccrine sweat glands (hematoxylin-eosin, ×100). (b) Subcutaneous white adipose tissue, fibrous type, of the chin. (c) Subcutaneous white adipose tissue, structural type, of the cheek (From: Wollina U, Goldman A, Abdel-Naser MB, Philipp-Dormston WG. Adipose tissue, fillers, and skin tightening. Dermatol Ther. 2019;32(2):e12626.).

Table II. Facial subcutaneous white adipose tissue (sWAT).

Type Remarks

Metabolic sWAT large adipocytes and minor extracellular connective tissue network

Structural sWAT large adipocytes with a fibrous network around the cells

Fibrous sWAT smaller adipocytes covered by a thick fibrous shell; lobular or non-lobular

The adipose tissue is deeply affected by facial aging. sWAT is involved in volume reduction, collagen content modification, and skin mechanical stability (19).

Facial adipose tissue contains human adipose stromal cells (hASCs), a subset of mesenchymal stem cells with numerous regenerative capabilities (20). HA is a key player in cell polarity and hydrodynamic processes. HA modulates the proliferation, migration, morphogenesis, and senescence of ASC (21-23). Huang et al. investigated the effect of hASCs-loaded HA gel in vitro after subcutaneous injection into nude mice. When

the mice were sacrificed at 8 weeks, the investigators detected new deposits of fat tissue (average size $0.6 \times 0.5 \times 0.3$ cm) surrounding the residual gel but no fibrosis or cystic space formation. In the surrounding tissue, neovascularization was noted. The adipocytes were rich in lipid droplets.

HAF injected into facial skin comes in close contact with dWAT and sWAT. HA has various pro-adipogenic effects (24). On the other hand, ASCs can reduce inflammation and accelerate collagen maturation by interacting their exosomes with HA, e.g., pro-inflammatory interleukin -6 becomes down-regulated (25).

In vitro, highly concentrated (45 mg/mL) high/low-molecular-weight HA hybrid complex increased cell viability of adipocytes by about 20% and 16% after 96 h and 7 days of incubation compared to controls. Intracellular lipid accumulation was about 3-fold compared to controls with increased droplet diameters. Adipocytes expressed CD44. By quantitative real-time polymerase chain reaction (qRT-PCR), it could be demonstrated that the gene expression of peroxisome proliferator-activated receptor gamma (PPARγ) was upregulated to about 56-fold vs. controls at day 14. In the same time range, there was an upregulation of adiponectin vs. controls of 1.37-fold. The leptin protein level increased by 2.01 at day 21 (32). These data demonstrate that high-molecular HA is an enhancer of adipocyte differentiation from stem cells (21).

Svolacchia et al. used enriched adipose tissue progenitors obtained by the MilliGraft kit® (Dual Trend srl Corso Torino, Chieri, Italy). These cells were diluted in a commercial HA filler and injected subcutaneously for deep dermal wrinkle correction in 14 adult females. Using a Numeric Rating scale (NRS) 10–0, a modified Vancouver scale, and a Berardesca scale, the patients were investigated for 150 days after the procedure. In addition, patient satisfaction was measured. All parameters significantly improved for the whole follow-up period (23).

During my clinical practice, I observed that deep filler placement in the midface could result in a prolonged sculpturing effect on the face, irrespective of its HA content. This could not be explained by temporary stimulation of fibroblasts, which produce pro-collagen (Fig. 5).

Fig. 5. 81-year-old woman before treatment (a) with a regular HA filler treatment. (b) At the age of 82. (c) At the age of 85. (d) At the age of 86. Over the years, subcutaneous and deep HA filler placement has restored volume and shape.

Mechanical stress exerted by filler injection can induce hASC differentiation and pericellular fibrosis around adipocytes (26). Some of these effects are created by HA binding to CD44 expressed on adipocytes. ASC supports autologous fat graft performance, stimulates angiogenesis, and decreases adipocyte necrosis in a HA scaffold. The effectiveness and longevity of HAF depend not only on the filler product but also on the local content of ADC and its ability to proliferate and differentiate (27).

A study with cross-linked HA, such as in commercial HAF in vitro, has proven this concept. Various cross-linked HA fillers with an HA concentration between 0.02 and 0.3% exerted no cytotoxic effects on preadipocytes (ASC). It was demonstrated that these HAF support adherence and survival and reduce basal and induced lipolysis in fully mature adipocytes. 0.3% cross-linked HA significantly increased the number of cells (+80%) compared to 0.02% HA. Cross-linked HA preserved the adipogenic capacity of preadipocytes (ASC) during prolonged cell culture. 0.3% HA increased lipid accumulation by about 200% vs. control and adiponectin secretion by nearly 500% (28). In a mice model, cross-linked HA enhanced the vascularization of fat grafts by stimulating the expression of CD31 and vascular endothelial growth factor (29). Another study in rats demonstrated histologically that HAF acts as a scaffold for autogenous tissue and angiogenesis, followed by the proliferation of adipocytes. This supports the concept that the injected filler volume is maintained in the long term by replacing HAF partially with autologous tissues (30).

Exogenous hyaluronidase inhibits the differentiation of 3T3L1 adipocytes in vitro. Hyaluronidase transitory stimulates calcium-binding Matrix Gla protein and CD44 expression up to 3-fold. The lipid accumulation is decreased. This demonstrates the role of HA in stem cell differentiation (33).

CONCLUSIONS AND OUTLOOK

The future of fillers may lay in the specific stimulation of autologous cells, including adipocytes of sWAT and dWAT, to rejuvenate the human face. This needs a better understanding of the factors for the differentiation of hASC into fully mature adipocytes, including molecular weight, composition and crosslinking of HA fillers, supplementary substances, and peculiarities of adipocyte physiology in different compartments of the human face.

Following this concept, it might even be possible to reduce the injected volume and the frequency of injections needed for boosting (31).

Ethical issue: Written consent was obtained from the patient.

REFERENCES

- 1. Kontis TC, Rivkin A. The history of injectable facial fillers. Facial Plast Surg. 2009; 25:67-72. doi: 10.1055/s-0029-1220645
- 2. Hohaus K, Bley B, Köstler E, Schönlebe J, Wollina U. Mineral oil granuloma of the penis. J Eur Acad Dermatol Venereol. 2003; 17:585-7. doi: 10.1046/j.1468-3083.2003.00896.x
- 3. Dejanović D, Loft A. 18F-FDG PET/CT findings following repeated intramuscular injections of "Site Enhancement Oil" in the upper extremities. Clin Nucl Med. 2017; 42:e436-7. doi: 10.1097/RLU.0000000000001781
- 4. Orentreich DS. Liquid injectable silicone: techniques for soft tissue augmentation. Clin Plast Surg. 2000; 27:595-612. PMID: 11039892.
- 5. Jones DH, Carruthers A, Orentreich D, Brody HJ, Lai MY, Azen S, Van Dyke GS. Highly purified 1000-cSt silicone oil for treatment of human immunodeficiency virus-associated facial lipoatrophy: an open pilot trial. Dermatol Surg. 2004; 30:1279-86. doi: 10.1111/j.1524-4725.2004.30406.x

- 6. Hexsel D, de Morais MR. Management of complications of injectable silicone. Facial Plast Surg. 2014; 30:623-7. doi: 10.1055/s-0034-1396756
- 7. Mortada H, Al Saud N, Alaithan B, Alhumsi T. Complications following permanent filler injection: a prospective cohort study and protocol of management. Plast Reconstr Surg Glob Open. 2022; 10:e4687. doi: 10.1097/GOX.0000000000004687
- 8. Wollina U, Goldman A. Hyaluronic acid dermal fillers: Safety and efficacy for treating wrinkles, aging skin, body sculpturing, and medical conditions. Clin Med Rev Ther. 2011; 3:107-21. doi: 10.4137/CMRT.S6928
- 9. Colon J, Mirkin S, Hardigan P, Elias MJ, Jacobs RJ. Adverse events reported from hyaluronic acid dermal filler injections to the facial region: a systematic review and meta-analysis. Cureus. 2023; 15:e38286. doi: 10.7759/cureus.38286
- 10. McCarthy AD, Hartmann C, Durkin A, Shahriar S, Khalifian S, Xie J. A morphological analysis of calcium hydroxylapatite and poly-l-lactic acid biostimulator particles. Skin Res Technol. 2024; 30:e13764. doi: 10.1111/srt.13764
- 11. Sickles CK, Nassereddin A, Patel P, Gross GP. Poly-L-Lactic Acid. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 29939648.
- 12. Aguilera SB, McCarthy A, Khalifian S, Lorenc ZP, Goldie K, Chernoff WG. The role of calcium hydroxylapatite (Radiesse) as a regenerative aesthetic treatment: a narrative review. Aesthet Surg J. 2023; 43:1063-90. doi: 10.1093/asj/sjad173
- 13. Courderot-Masuyer C, Robin S, Tauzin H, Humbert P. Evaluation of lifting and antiwrinkle effects of calcium hydroxylapatite filler. In vitro quantification of contractile forces of human wrinkle and normal aged fibroblasts treated with calcium hydroxylapatite. J Cosmet Dermatol. 2016; 15:260-8. doi: 10.1111/jocd.12215
- 14. Cassuto D, Delledonne M, Zaccaria G, Illiano I, Giori AM, Bellia G. Safety assessment of high- and low-molecular-weight hyaluronans (Profhilo®) as derived from worldwide postmarketing data. Biomed Res Int. 2020; 2020:8159047. doi: 10.1155/2020/8159047
- 15. Braz A, Colucci L, Macedo de Oliveira L, et al. A retrospective analysis of safety in participants treated with a hybrid hyaluronic acid and calcium hydroxyapatite filler. Plast Reconstr Surg Glob Open. 2024; 12:e5622. doi: 10.1097/GOX.000000000005622
- 16. Zerbinati N, D'Este E, De Silvestri A, et al. Efficacy of pegylated hyaluronic acid filler enriched with calcium hydroxyapatite: a 24-week post-market, observational, prospective, open-label, single-center study. J Funct Biomater. 2023; 14:345. doi: 10.3390/jfb14070345
- 17. Lin JY, Lin CY. The AestheCode System: A Safe and Efficient Guide for AestheFill Injection. Aesthetic Plast Surg. 2024; doi: 10.1007/s00266-024-04250-4. Epub ahead of print.
- 18. Sbarbati A, Accorsi D, Benati D, Marchetti L, Orsini G, Rigotti G, Panettiere P. Subcutaneous adipose tissue classification. Eur J Histochem. 2010; 54:e48. doi: 10.4081/ejh.2010.e48
- 19. Wollina U, Wetzker R, Abdel-Naser MB, Kruglikov IL. Role of adipose tissue in facial aging. Clin Interv Aging. 2017; 12:2069-76. doi: 10.2147/CIA.S151599
- 20. Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells a review. Biotechnol Adv. 2018; 36(4):1111-26. doi: 10.1016/j.biotechadv.2018.03.011
- 21. Huang SH, Lin YN, Lee SS, Chai CY, Chang HW, Lin TM, Lai CS, Lin SD. New adipose tissue formation by human adipose-derived stem cells with hyaluronic acid gel in immunodeficient mice. Int J Med Sci. 2015; 12:154-62. doi: 10.7150/ijms.9964
- 22. Dong Y, Cui M, Qu J, Wang X, Kwon SH, Barrera J, Elvassore N, Gurtner GC. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater. 2020; 108:56-66. doi: 10.1016/j.actbio.2020.03.040
- 23. Svolacchia L, Prisco C, Giuzio F, Svolacchia F. Adipose autologous micrograft and its derived mesenchymal stem cells in a bio cross-linked hyaluronic acid scaffold for correction deep wrinkles, facial depressions, scars, face

- dermis and its regenerations: a pilot study and cases report. Medicina (Kaunas). 2022; 58(11):1692. doi: 10.3390/medicina58111692
- 24. Zhu Y, Kruglikov IL, Akgul Y, Scherer PE. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol. 2019; 78-79:284-91. doi: 10.1016/j.matbio.2018.02.012
- 25. Kim J, Jo T, Nam H, Kim BJ, Nam SM, Kim J, Choi J, Jeong W. Adipose-derived exosomes as a preventative strategy against complications in hyaluronic acid filler applications: A comprehensive in vivo analysis. J Plast Reconstr Aesthet Surg. 2024; S1748-6815(24)00452-2. doi: 10.1016/j.bjps.2024.07.071. Epub ahead of print.
- 26. Wollina U. Midfacial rejuvenation by hyaluronic acid fillers and subcutaneous adipose tissue a new concept. Med Hypotheses. 2015; 84:327-30. doi: 10.1016/j.mehy.2015.01.023
- 27. Kruglikov IL, Wollina U. Soft tissue fillers as non-specific modulators of adipogenesis: change of the paradigm? Exp Dermatol. 2015; 24:912-5. doi: 10.1111/exd.12852
- 28. Nadra K, André M, Marchaud E, Kestemont P, Braccini F, Cartier H, Kéophiphath M, Fanian F. A hyaluronic acid-based filler reduces lipolysis in human mature adipocytes and maintains adherence and lipid accumulation of long-term differentiated human preadipocytes. J Cosmet Dermatol. 2021; 20:1474-82. doi: 10.1111/jocd.13794
- 29. Zheng Z, Lei X, Yang Y, Tan X, Cheng B, Huang W. Changes in human fat injected alongside hyaluronic acid in the backs of nude mice. Aesthet Surg J. 2021; 41:NP631-42. doi: 10.1093/asj/sjaa351
- 30. Mochizuki M, Aoi N, Gonda K, Hirabayashi S, Komuro Y. Evaluation of the in vivo kinetics and biostimulatory effects of subcutaneously injected hyaluronic acid filler. Plast Reconstr Surg. 2018; 142:112-21. doi: 10.1097/PRS.0000000000004496
- 31. Wollina U, Goldman A. Paradigmenwechsel im Verständnis der Wirkung von Hyaluronsäurefillern [Paradigm shift in understanding hyaluronic acid filler effects]. Hautarzt. 2021; 72:403-7. doi: 10.1007/s00105-021-04780-x
- 32. Vassallo V, Di Meo C, Alessio N, La Gatta A, Ferraro GA, Nicoletti GF, Schiraldi C. Highly Concentrated Stabilized Hybrid Complexes of Hyaluronic Acid: Rheological and Biological Assessment of Compatibility with Adipose Tissue and Derived Stromal Cells towards Regenerative Medicine. Int J Mol Sci. 2024; 25(4):2019. doi: 10.3390/ijms25042019
- 33. Drygalski K, Higos R, Merabtene F, Mojsak P, Grubczak K, Ciborowski M, Razak H, Clément K, Dugail I. Extracellular matrix hyaluronan modulates fat cell differentiation and primary cilia dynamics. Biochim Biophys Acta Mol Cell Biol Lipids. 2024; 1869(4):159470. doi: 10.1016/j.bbalip.2024.159470